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Reinforcement Learning

* Cognitive agents are able to autonomously learn new tasks by interacting
with the environment.

* Reinforcement learning (RL) has been shown a successful method for
agents to acquire new skills by exploring their environment.

* In human—-robot environments, it is crucial that end-users may correctly
understand their robotic team-partners.
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Explainable Robotic Systems

* A robot can provide featured-based or goal-driven explanations.

* Not acceptable. | choose action left because it maximizes future
collected reward OR | choose action right because it is the next one
following the optimal policy.

* Using the probability of success is possible to create human-like
explanations.
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Explainable Artificial Intelligence?

* Al explanations alighed to human communication.
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! Dazeley, R., Vamplew, P., Foale, C., Young, C., Aryal, S., & Cruz, F. "Levels of Explainable Artificial Intelligence for Human-aligned
Conversational Explanations”. Artificial Intelligence, 299, 103525. 2021.




Memory-based Method?

* From a non-expert end-user perspective, most relevant questions:
'why?' and 'why not?'. For instance
 Why did you step forward in the last movement?
 Why did you not turn to the right in this situation?
* We propose MXRL to compute P, and N, using an episodic memory.

* We implement a list of state-action pairs (TList).

2 Cruz, F., Dazeley, R., Vamplew, P. "Memory-based explainable reinforcement learning". In Proceedings of the 32nd Australasian
Joint Conference on Artificial Intelligence (Al2019), pp. 66-67, Adelaide, Australia, 2019.




Memory-based Method

° MXRL a |g0 r|th m. Algorithm 1 Memory-based explainable reinforcement learning approach with
the on-policy method SARSA to compute the probability of success and the
number of transitions to the goal state.

I: Imitialize Q(s,a), Tt, Ts, Ps, Ny
2: for each episode do
3 Initialize T'ris¢|]

4: Choose an action using a; ¢~ SELECTACTION (¢ )
D repeat
6 Take action a
T Save state-action transition Tr;s:.add(s, a)
3 T, [s][a] « Ti[s][a] + 1
9: Observe reward 7411 and next state s¢11
10: Choose next action asy1 using softmax action selection method
11: Q(St-. ﬂt) +— Q(sq, ﬂt) + Ck[?’t+1 + ’}"Q(St+1, (I-t+1) — Q(St, ﬂt)]
12: St 4— Spu1: A 4 Qg1
13: until s is terminal (goal or aversive state)
14: if s 1s goal state then
15: for each s.a € T;s¢t do
16: Ts[s]la] + Ts[s]la] + 1
17: end for
18: end if
19: Compute P « T /T,
20: Compute N; for each s € TList as pos(s, Trist) + 1

21: end for




Memory-based Method?

* Experimental setup: A 3x4 grid world scenario.
* Four allowed actions in this scenario: down, up, right, and left.
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2 Cruz, F., Dazeley, R., Vamplew, P. "Memory-based explainable reinforcement learning". In Proceedings of the 32nd Australasian
Joint Conference on Artificial Intelligence (Al2019), pp. 66-67, Adelaide, Australia, 2019.



Memory-based Method

* Experimental results.
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Memory-based Method?
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* In this context, one possible question to the artificial agent is:
 Why did you choose action down when in state 0?

e Using Q-values to explain this is pointless for a non-expert user.

Q(s=0; a=down) =-0.181 | Q(s=0; a=up) =-0.998 Q(s=0; a=right) = -0.411

Q(s=0; a=left) = -0.998

* If we use Ps, the agent may answer the end-user: | chose to go down
because that has a 73.6% probability of successfully reaching the goal.

Ps(s=0; a=down) = 0.736 Ps(s=0; a=up) =0 Ps(s=0; a=right) = 0.656 Ps(s=0; a=left) =0

|
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]
I

.

2 Cruz, F., Dazeley, R., Vamplew, P. "Memory-based explainable reinforcement learning". In Proceedings of the 32nd Australasian

Joint Conference on Artificial Intelligence (Al2019), pp. 66-67, Adelaide, Australia, 2019.
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* Another possible question to the agent is:
 Why did you not choose to go left when in state 0?

e Using Q-values to explain this is pointless for a non-expert user.

* If we use Ps, one possible answer is: I did not choose left because that

has a zero probability of success, whereas by choosing down has a 73.6%

probability of success, which was higher than other actions.

Ps(s=0; a=down) = 0.736 Ps(s=0; a=up) =0 Ps(s=0; a=right) = 0.656 Ps(s=0; a=left) =0

2 Cruz, F., Dazeley, R., Vamplew, P. "Memory-based explainable reinforcement learning". In Proceedings of the 32nd Australasian
Joint Conference on Artificial Intelligence (Al2019), pp. 66-67, Adelaide, Australia, 2019.




Memory-based in a Hierarchical Scenario3
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3 Mufioz, H., Portugal, E., Ayala A., Fernandes, B., Cruz, F. “Explaining Agent’s Decision-making in a Hierarchical Reinforcement
Learning Scenario". Accepted at the IEEE 41st International Conference of the Chilean Computer Society (SCCC 2022). In press.
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* Spaceship problem:
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Learning- and Introspection-based Methods*

* Goal-driven explanations.

Algorithm 2 Explainable reinforcement learning ap-
proach to compute the probability of success using the

learning-based approach.

1: Initialize Q(s,a), P(s¢, at)
2: for each episode do

3: Initialize s
4: Choose an action a; from s¢
5: repeat
G: Take action a;
7 Observe reward 741 and next state s¢41
8: Choose next action a1 using softmax action
selection method
9: Q(st.at) «— Q(st,at) + afrer1 + yQ(st+1.at+1)
—Q(s¢t,az)]
10: P(st,ar) «— P(st,ar) + afpir1 + P(sit1,ai41)
—P(s¢, at)]
11: St < St41: A ¢ Ar 1
12: until s; is terminal (goal or aversive state)
13: end for

Algorithm 3 Explainable reinforcement learning ap-
proach to compute the probability of success using the
introspection-based approach.

1: Initialize Q(s,a), P.
2: for each episode do

3: Initialize s¢

4: Choose an action a: from s;

5% repeat

6: Take action at

7 Observe reward r+41 and next state s;1

8: Choose next action a;41 using softmax action

selection method
9: Q(st,at) — Q(st.ar) +afrerr +vQ(st41.at11)
_Q(St: at ”

10: St +— St41; At +— Q41
11: until s; is terminal (goal or aversive state)

5. P~ (. Qlagan) =1
12 P, ~ {(1 &) (2 logio n 1)]15 .
13: end for

4 Cruz, F.,, Dazeley, R., Vamplew, P., Moreira, |. “Explainable Robotic Systems: Understanding Goal-driven Actions in a Reinforcement
Learning Scenario”. Neural Computing and Applications. Springer. 2021.




Learning- and Introspection-based Methods*

* Deterministic and stochastic navigation task.

e Continuous sorting object task.
* Real-world scenario.

SIS ?"‘

4 Cruz, F.,, Dazeley, R., Vamplew, P., Moreira, |. “Explainable Robotic Systems:
Learning Scenario”. Neural Computing and Applications. Springer. 2021.

Understanding Goal-driven Actions in a Reinforcement




Learning- and Introspection-based Methods*
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Explanation. | chose to go left because that has a 87.6% probability of reaching the goal successfully

4 Cruz, F., Dazeley, R., Vamplew, P., Moreira, |. “Explainable Robotic Systems: Understanding Goal-driven Actions in a Reinforcement
Learning Scenario”. Neural Computing and Applications. Springer. 2021.




Q-value

Learning- and Introspection-based Methods*
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Question. Why the action move right or move left have not been
chosen by the agent.

Explanation. | have selected the action grab object because doing so,
| have 59% chances of sorting all the objects successfully, while
moving left | have only 38% probability of being successful.

4 Cruz, F.,, Dazeley, R., Vamplew, P., Moreira |. “Explainable Robotic Systems: Understanding Goal-driven Actions in a Reinforcement
Learning Scenario”. Neural Computing and Applications. Springer. 2021.




Non-episodic and Continuous Domains®

* Introspection method along with Rainbow deep RL algorithm

. .1
* Maximal reward per step. P, ~ 5+ logg Qlsa)
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> Ayala, A., Cruz, F., Fernandes, B., Dazeley, R. "Explainable Deep Reinforcement Learning Using Introspection in a Non-episodic

Task". International Conference on Development and Learning (ICDL), Workshop on Human-aligned Reinforcement Learning for
Autonomous Agents and Robots, Beijing, China, 2021.



Non-episodic and
Continuous Domains®

Probability of success
=]
-4

* Drone scenario in Webots.
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Figure 3: Probabilities of success for every available action in a spot close to the
top-left corner.
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Figure 4: Probabilities of success for every available action in a spot close to the
bottom-right corner.

6 Schroeter, N., Cruz, F., Wermter, S. "Introspection-based Explainable Reinforcement Learning in Episodic and Non-episodic
Scenarios". Accepted at the Australian Conference on Robotics and Automation (ACRA 2022). In press.




Evaluation of Resources’

* Memory and CPU usage in the car racing game.

(@) t=0 (b) t=1 () t=2

Figure 3. The input is represented by three consecutive images of 96 x 96 (matrix of 96 x 96 x 3) from
the car racing game. The images in the figure are examples since they were previously processed in a
gray scale.

7 Portugal, E., Cruz, F, Ayala, A., Fernandes, B. "Analysis of Explainable Goal-Driven Reinforcement Learning in a Continuous
Simulated Environment". Algorithms, 15(3), 91. 2022.
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Evaluation of Resources’

* Memory and CPU usage in the car racing game.
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Evaluating Goal-driven Explanations by
Non-experts End-users®

e User study using Amazon Mechanical Turk with 228 participants.
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(a) Initial state. (b) State after ‘go east’ action.

(a) Initial state. (b) State after ‘grab an object’ action. (a) Initial state. (b) State after ‘move to the left’ action

8 Cruz, F, Young, C., Dazeley, R., Vamplew, P. "Evaluating Human-like Explanations for Robot Actions in Reinforcement Learning
Scenarios". IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.




Evaluating Goal-driven Explanations by

Non-experts End-users®

e Technical, human-like and standalone, counterfactual explanations.

 [S] After performing ‘go east’ from (1,1). Why did you move to the east?
* [T] | moved to the east because it has a Q-value of -0.411
* [H] | moved to the east because it has a 65.6% probability of reaching the green position

 [C] After performing ‘go south’ from (3,0). Why you did not move to the east?

* [T]Idid not move to the east because it has a Q-value of -0.998, while moving south has a Q-
value of 0.181

* [H] I did not move to the east because it has 0% probability of reaching the greenposition,
instead moving south has 73.6% probability

Initial situation Initial situation

8 Cruz, F, Young, C., Dazeley, R., Vamplew, P. "Evaluating Human-like Explanations for Robot Actions in Reinforcement Learning
Scenarios". IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.




Evaluating Goal-driven Explanations by
Non-experts End-users®

* Most of participants reported no previous expertise in machine
learning.
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8 Cruz, F, Young, C., Dazeley, R., Vamplew, P. "Evaluating Human-like Explanations for Robot Actions in Reinforcement Learning
Scenarios". IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.




Evaluating Goal-driven Explanations by

Non-experts End-users®
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8 Cruz, F, Young, C., Dazeley, R., Vamplew, P. "Evaluating Human-like Explanations for Robot Actions in Reinforcement Learning
Scenarios". IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.




Evaluating Goal-driven Explanations by

Non-experts End-users®

* Expert and non-expert end-users.
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8 Cruz, F, Young, C., Dazeley, R., Vamplew, P. "Evaluating Human-like Explanations for Robot Actions in Reinforcement Learning
Scenarios". IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.




Conclusions and Future Work

* Human-like explanations are in general well accepted by non-expert
end-users.

 Combination of goal-driven and feature-based explanations is needed.
* Interaction between mechanismes.
* Real-world high-dimensional robot learning.



Recruiting PhD Students

* Australian Government Research Training Program (RTP) Scholarship
e ~37,000 AUD per year + Tuition fee scholarship
* Health insurance
* 3.5vyears
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